Химический состав гемоглобина

ГЕМОГЛОБИН

Химический состав гемоглобина

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

ГЕМОГЛОБИН (от греч. haima- кровь и лат. globus-шар), осн. белок дыхат. цикла, участвующий в переносе О2 от органов дыхания к тканям, а в обратном направлении – СО2. Содержится в эритроцитах крови почти всех позвоночных и гемолимфе большинства беспозвоночных животных. Гемоглобин позвоночных (мол. м.

6,4*104-6,6*104) состоят из четырех попарно идентичных субъединиц (их обозначают греч. буквами; теми же буквами обозначают входящие в состав субъединиц полипептидные цепи, а также гены, кодирующие эти цепи). Каждая субъединица имеет белковую глобиновую часть, состоящую из 140-160 аминокислотных остатков, с к-рой нековалентно связан гем-ферропрото-порфирин (см.

ф-лу).

Ф-цию переноса О2 у нек-рых видов беспозвоночных выполняют крупные гемсодержащие белки-эритрокруорины (мол. м. 0,4*106-6,7*106), состоящие из 30-400 субъединиц, и хлоркруорины (мол. м. 3,4*106), состоящие из 190 субъединиц. Эти белки способны обратимо связывать одну молекулу О2 на группу гема, т.е. на субъединицу.

Переносчиком О2 у др. видов беспозвоночных служат негемовые белки, состоящие из 8-10 субъединиц,— медьсодержащие гемоцианины (мол. м. 0,05*107*107) и железосодержащие гемэритрины (мол. м. 1*105). Каждая субъединица таких белков содержит два атома металла (соотв. Сu + и Fe2 +), способных связать одну молекулу О2.

Гемоглобин взрослого человека (НbА) имеет мол. м. 6,49*104 и принадлежит к числу наиб. изученных белков. Его форма в р-ре близка к эллипсоиду с осями 6,4, 5,5 и 5,0 нм; изоэлектрич. точка 6,9. Тетрамер НЬА состоит из двух и двухсубъединиц, их полипептидные цепи содержат соотв. 141 и 146 аминокислотных остатков.

Известны первичная структура обеих цепей, а также пространств. структура оксигенированной, дезоксигенированной, ряда лигандированных, а также окисленной формы (содержит Fe3 +) НbА. Пространств. структура субъединиц (рис. 1) характеризуется наличием восьмиспиральных участков, включающих около 80% аминокислотных остатков, и внутр.

полости -гемового кармана. Фиксирование гема в субъединице осуществляется в результате гидрофобных взаимод. пиррольных и винильных групп гема с алифатич. и ароматич.

боковыми радикалами аминокислот, выстилающими полость кармана, а также благодаря координационной связи (направлена перпендикулярно к плоскости кольца гема) Fe2+ с аксиальным лигандом-имидазольной группой гистидина (т. наз. проксимальный гистидин). При оксигенации молекула О2 занимает шестое вакантное место в координационной сфере Fe2+.

Связывание происходит обратимо, без окисления железа, с образованием стабильного оксигенированного комплекса НbО2. Одна молекула гемоглобина способна присоединить 4 молекулы О2-по одной на группу гема.

Рис. 1. Схема упаковки полипептидной цепи субъединицы гемоглобина. Точками обозначены положения С атомов аминокислотных остатков; 1 -гем; 2-проксимальный остаток гистидина.

Субъединицы и прочно удерживаются в составе тетрамера гемоглобина множественными ван-дер-ваальсовыми взаимод. и водородными связями; дезоксигенированная форма НbА стабилизирована кроме того неск. ионными связями внутри и между субъединицами.

Тетрамер гемоглобина-кооперативная структура, в к-рой существует взаимод. пространственно разобщенных между собой групп (т. наз. гем-гем взаимодействие).

Это проявляется в облегчении присоединения к тетрамеру последующих молекул О2 по мере протекания оксигенирования, что значительно увеличивает эффективность переноса О2 при физиол.

условиях по сравнению с мономерными гемоглобином и миоглобином (белок, депонирующий О2 в мышцах). Присоединение О2 к молекуле гемоглобина сопровождается значит. конформационными перестройками пространств. структуры субъединиц и тетрамера в целом.

Сродство гемоглобина к О2 является основным физ.-хим. показателем функциональных св-в гемоглобина; его принято характеризовать зависимостью степени оксигенирования гемоглобина от парциального давления кислорода (кислородно-диссоционная кривая, или КДК, рис.

2), а также величиной, при к-рой достигается оксигенирование 50% гемоглобина (р50)- Нормальная величина р50 НbА в крови при физиол. условиях [37 °С, парциальное давление СО2 40 мм рт. ст., рН 7,4] составляет 26-28 мм рт. ст.

Сигмоидный характер КДК отражает кооперативный характер оксигенирования. При существующем у человека различии артериальной и венозной крови (соотв. 90 ± 10 и 40 ± 2 мм рт. ст.

) 1 л крови, насыщенной в легких кислородом (92-98% гемоглобина находится в форме НbО2), отдает в тканях ок. 45 мл О2, при этом содержание НbО2 в венозной крови составляет 70-75%.

Рис. 2. Зависимость содержания оксигемоглобина от парциального давления кислорода.

Из клеток тканей СО2 диффундирует через плазму крови в эритроциты, где гидратируется в р-ции, катализируемой ферментом карбоангидразой:

Гидрокарбонат-ионы в эритроцитах замещаются далее на ионы Cl- из плазмы, сами переходят в плазму и переносятся ею к легким. Определенная часть СО2 связывается в эритроцитах с N-концевымиаминогруппами гемоглобина с образованием остатка карбаминовой к-ты, уменьшая сродство гемоглобина к О2.

Увеличение РСО2 т-ры, ионной силы р-ра и уменьшение рН снижают сродство гемоглобина к О2. Важнейший внутриэритроцитарный регулятор сродства – анионы 2,3-дифосфоглицериновой к-ты. Увеличение их концентрации также уменьшает сродство гемоглобина к О2. Снижение сродства при уменьшении рН в интервале 9-6 наз.

щелочным эффектом Бора, к-рый обусловлен существованием равновесия:

Этот эффект вносит значит. вклад в поддержание постоянного значения рН крови и освобождение О2 в тканях соотв. уровню обмена в-в [увеличение концентрации СО2 сдвигает равновесие р-ций (1) и (2) вправо].

В легких, где рСО2 составляет 40 мм рт. ст.

, процессы, описываемые р-циями (1) и (2), идут в обратном направлении, в результате чего СО2, находящийся в растворенном и связанном с гемоглобином состоянии, освобождается, гемоглобин оксигенируется и дыхат. цикл завершается.

У человека на разных этапах развития организма обнаружено несколько гемоглобинов, различающихся составляющими их субъединицами. На ранних стадиях эмбрионального развития у зародыша обнаруживаются гемоглобины строения,, .

На более поздних стадиях появляется и доминирует к моменту рождения HbF (; т. наз. фетальный гемоглобин). Св-ва эмбриональных гемоглобинов обеспечивают выполнение кисло-родтранспортной ф-ции в специфич. условиях внутриутробной жизни.

В эритроцитах взрослого человека содержится в норме 95-97% НЬА , начинающего преобладать через 2-3 месяца после рождения, и 2-3% НbА2

Первичные структуры иполипептидных цепей гемоглобина человека, а также мн. др. глобиновых цепей разл. происхождения известны. Гены, кодирующиеглобиновые цепи гемоглобина человека, сцеплены и расположены в последовательности на хромосоме 16 (цифры-номера дуплицированных генов); группа генов, кодирующих др.

полипептидные цепи, также непосредственно примыкающие один к другому, локализована на хромосоме 11. Первичная структураи неглобиновых генов человека известна.

Для каждого из них установлено наличие двух нитронов (отрезков ДНК, прерывающих кодирующие участки,-экзоны) и больших некодирующих участков, находящихся на флангах генов.

Биосинтез гема, иглобиновых цепей, а также сборка тетрамерных молекул НbА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов (их продолжительность жизни у человека составляет 120-130 дней) из костного мозга в кровяное русло.

Точковые мутации в экзонах глобиновых генов могут вести к появлению мутантных гемоглобинов с единичной аминокислотной заменой. Это м. б. причиной молекулярных болезней — наследств. гемоглобинопатий. наиб. известный пример мутантного гемоглобина- HbS, в к-ром шестой от N-концаглобиновой цепи остаток глутаминовой к-ты заменен на остаток валина.

Такой гемоглобин содержится в эритроцитах больных серповидноклеточной анемией. Точечная мутация, делеция (выпадение участка ДНК) или другой дефект глобинового гена, локализованный вне экзонов, может уменьшить продукцию глобиновых цепей в эритроцитах, нарушить сбалансированный биосинтезицепей и привести к др.

распространенной разновидности гемоглобинопатий-талассемии.

===

Исп. литература для статьи «ГЕМОГЛОБИН»: Уайт А., Хендлер Ф., Смит Э., Основы биохимии, пер. с англ., т. 3, М, 1981, с. 1218-66; Bunn Н. F., Forget В. G., Ranney Н. М, Нетоglobinopathies, Phil.- L.

– Toronto, 1977; Human hemoglobins and hemoglobinopathies, “Texas Reports on Biology and Medicine”, 1980-1981, v. 40; Atlas of molecular structures in bioldgy, ed. by D.C. Philips, P.M. Richards, v. 2, Haemoglobin and myoglobin, ed. by G. Fermi and M.F. Perutz, Oxf.

, 1981; Methods in enzymology, v. 76-Hemoglobins, N. Y.- L.- [a. o.], 1981. B.A. Спивак.

Страница «ГЕМОГЛОБИН» подготовлена по материалам химической энциклопедии.

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

Еще по теме:

Источник: //www.xumuk.ru/encyklopedia/965.html

Какую роль в организме играет гемоглобин и что значит, если он повышен или понижен?

Химический состав гемоглобина

Цифры напротив символа Hb, или гемоглобина, в бланке с результатами общего анализа крови могут раскрыть врачу причины низкого давления, головокружения, судорог ног пациента, а также оповестить о надвигающихся серьезных угрозах.

Своевременное выявление отклонений и приведение концентрации гемоглобина в норму позволит избежать серьезных проблем со здоровьем.

Речь идет о снижении рисков инфарктов и инсультов у людей в возрасте, патологий развития детей, ухудшения состояния матери и плода во время беременности.

Что такое гемоглобин и каковы его функции

Гемоглобин (Hb) — сложный железосодержащий белок, содержащийся в эритроцитах (красных кровяных тельцах) крови и частично присутствующий в свободном виде в плазме.

Именно он осуществляет перенос кислорода от легких к клеткам и углекислого газа — в обратном направлении.

Если говорить образно, то эритроцит — это своеобразное грузовое судно, курсирующее по кровяному руслу, а молекулы гемоглобина — контейнеры, в которых транспортируется кислород и углекислый газ. В норме один эритроцит вмещает порядка 400 млн молекул гемоглобина.

Участие в газообмене — важнейшая, но не единственная функция «кровяных шаров» (от греч. haima — «кровь» + лат. globus — «шар»).

Благодаря своим уникальным химическим свойствам гемоглобин является ключевым элементом буферной системы крови, поддерживающим кислотно-щелочной баланс в организме. Hb связывает и выводит на клеточном уровне кислые соединения (препятствует ацидозу — закислению тканей и крови).

А в легких, куда он поступает в форме карбгемоглобина (HbCO2), за счет синтеза углекислоты предотвращает противоположный процесс — защелачивание крови, или алкалоз[1].

Производная Hb — метгемоглобин (HbOH) — обладает еще одним полезным свойством: прочно связывать синильную кислоту и другие токсичные вещества. Таким образом, железосодержащий белок принимает удар на себя и снижает степень отравления организма[2].

Итак, гемоглобин крайне важный элемент жизнедеятельности и патологическое уменьшение его концентрации (анемия или малокровие) может спровоцировать в лучшем случае ломкость ногтей и волос, сухость и шелушение кожи, мышечные судороги, тошноту и рвоту, головокружение. Острая же форма анемии вызывает кислородное голодание клеток, приводящее к обморокам, галлюцинациям и фатальным последствиям — гипоксии мозга, атрофии нервных клеток, параличу дыхательной системы.

Как должно быть в норме

Уровень гемоглобина в нашей крови может несколько увеличиваться и уменьшаться по естественным причинам. Обновление гемоглобина связано с жизненным циклом эритроцита, к которому он прикреплен. Так, примерно каждые 120 дней часть молекул гемоглобина вместе с эритроцитами отправляется в печень — на расщепление и после вновь синтезируется, присоединяясь к свободному эритроциту[3].

Количество гемоглобина зависит от возраста и пола, меняется в процессе вынашивания и рождения ребенка[4].

На гемоглобин также оказывают влияние специфические условия труда или проживания (например, повышенные показатели бывают у пилотов и жителей гористой местности), приверженность вегетарианству и донорство (эти факторы, напротив, снижают гемоглобин)[5].

Согласно рекомендациям ВОЗ[6], нормой гемоглобина считается:

  • для детей от полугода до 5 лет — 110 г/л и выше;
  • для детей 5–11 лет — 115 г/л и больше;
  • для детей 12–14 лет, а также девушек и женщин (15 лет и старше) — 120 г/л и выше;
  • для мужчин (15 лет и старше) — 130–160 г/л.

Беременным женщинам, обеспечивающим минералами (в том числе железом) себя и малыша, важно следить, чтобы уровень гемоглобина не падал ниже 110 г/л. Отметим, что, по данным ВОЗ, железодефицитная анемия (ЖДА) диагностируется у 38,2% беременных на планете[7].

Дефицит молекул гемоглобина может возникнуть после 20-й недели «интересного положения»: из-за увеличения объема циркулирующей крови, растущих потребностей плода, уменьшения поступления и всасывания железа вследствие токсикоза и расстройств ЖКТ.

В это время женщину может мучить слабость, головокружение, одышка даже при непродолжительной ходьбе, судороги нижних конечностей. Опасное следствие острых форм ЖДА — преждевременные роды, задержки в развитии плода.

Кстати, необычные вкусовые запросы беременных (вплоть до анекдотичных, таких как салат из жареной клубники и селедки) порой тоже связаны с потребностью в железе для синтеза гемоглобина.

Роды, сопровождающиеся потерей крови, ведут к дополнительному понижению гемоглобина. В целом от зачатия до появления ребенка на свет организм женщины утрачивает порядка 700 мг железа, еще 200 мг — за период лактации[8].

На восстановление запасов требуется не менее трех лет.

Виды анализов на гемоглобин

Подсчет числа молекул гемоглобина производится при общем анализе крови.

Помимо количества белка (строка Hb), в бланке анализа могут указать MCH/MCHC, что соответствует среднему содержанию/концентрации гемоглобина в эритроците.

Это уточнение позволяет подсчитать полезный железопротеин и исключить из расчета аномальные, нестабильные формы гемоглобина, не способные переносить кислород.

Для измерения гемоглобина во внелабораторных условиях — в машинах скорой помощи или при проведении профилактических выездных осмотров — применяются специальные гемоглобинометры. Это портативные приборы, в которые помещается кровь с реагентом для фотометрического автоматического определения количества гемоглобина.

Для массового тестирования на анемию в странах третьего мира ВОЗ разработала малозатратный колорометрический метод исследования. При колориметрии каплю крови наносят на специальную хроматографическую бумагу и сопоставляют ее со шкалой цветов, соответствующих разным показателям гемоглобина с шагом 20 г/л[9].

Уровень гликированного гемоглобина определяется и при биохимическом анализе венозной крови. Цель исследования в данном случае — определение глюкозы в крови, которая образует прочное соединение с гемоглобином и лишает его возможности транспортировать кислород. Показатель важен для диагностики сахарного диабета и оценки эффективности его лечения.

Чем опасен повышенный гемоглобин в крови

Высокий гемоглобин может быть вызван объективной нехваткой кислорода, стимулирующей организм на увеличенное производство этого белка крови. Подобная патология часто фиксируется у экипажей воздушных судов и часто летающих пассажиров, жителей высокогорья, альпинистов, горнолыжников.

В силу большей потребности в кислороде повышенный уровень гемоглобина свойственен профессиональным спортсменам, преимущественно лыжникам, легкоатлетам, борцам, тяжелоатлетам.

Это физиологический механизм компенсации, не вызывающий никаких медицинских опасений (кавказское долголетие — яркий тому пример).

Повысить гемоглобин может и пагубная привычка: во время курения человек вдыхает меньше кислорода, чем требуется, и организм реагирует на это выработкой дополнительного гемоглобина.

К сожалению, повышенный гемоглобин может указывать и на патологии системы кроветворения: эритроцитоз, рак крови, обезвоживание организма, порок сердца и легочно-сердечную недостаточность, а также на непроходимость кишечника[10].

Увеличенное количество гликированного гемоглобина отмечается при сахарном диабете: часть молекул Hb «перетягивает» на себя глюкозу, и для нормального дыхания требуются добавочные кислородные «контейнеры»[11].

Повышенный свободный гемоглобин в плазме фиксируется и при ожоговых поражениях вследствие разрушения эритроцитов с высвобождением из них гемоглобина[12].

Опасность высокого гемоглобина (+20 г/л от нормы и более) заключается в сгущении и увеличении вязкости крови, приводящему к образованию тромбов. Тромбы, в свою очередь, могут вызвать инсульт, инфаркт, кровотечение в ЖКТ или венозный тромбоз[13].

Гемоглобин ниже нормы: что это значит и к чему приводит

Железо — один из самых распространенных и легко добываемых химических элементов на Земле.

При этом, как ни парадоксально, от дефицита железа в организме страдает больше людей, чем от какого-либо другого нарушения здоровья[14].

В группе риска население из низких социальных слоев, не получающее достаточного количества железа из продуктов питания, женщины репродуктивного возраста и дети, то есть люди, у которых «приход» элемента меньше «расхода».

Причиной низкого уровня гемоглобина (минус 20 г/л от нормы и более) зачастую являются скудное или несбалансированное питание — недостаточное поступление железа и меди, витаминов A, С и группы B или употребление железосодержащей пищи совместно с цинком, магнием, хромом или кальцием, которые не позволяют Fe усваиваться[15].

Низкие показатели могут наблюдаться у вегетарианцев, т.к. негемовое железо из растительной пищи усваивается намного хуже, чем гемовое, источником которого служат продукты животного происхождения[16].

Смежная причина — наличие кишечных паразитов, которые перехватывают поступающие микроэлементы и витамины. Усвоению железа могут также мешать проблемы с желудочно-кишечным трактом.

Заметное снижение уровня гемоглобина сопровождает кровопотери, вызванные ранениями, оперативным вмешательством, менструацией, кровотечениями, возникающими во время родов и абортов, а также при донации крови и ее компонентов.

На уровень гемоглобина влияют и скрытые кровопотери при патологии ЖКТ (язвы желудка и ДКП), варикозе, миомах и кистах органов женской половой системы, кровоточивость десен.

Причины снижения гемоглобина, возникающие во время беременности и лактации, а также осложнения, к которым они могут привести, мы рассмотрели выше. Длительный железодефицит у мужчин, детей и небеременных женщин имеют сходную симптоматику: ухудшение состояния кожи, ногтей и волос, головокружение, обмороки, онемение рук и ног, беспричинная слабость.

Кислородное голодание вследствие недостатка гемоглобина может привести к ухудшению памяти, замедлению нервных реакций, в запущенной форме — к атрофии клеток мозга и других органов и систем организма.

Усиленное кровообращение (более частый прогон гемоглобина от легких к тканям и обратно) чревато проблемами с сердцем и сосудами: кардиомиопатией и развитием сердечной недостаточности.

Низкий гемоглобин негативно отражается на буферной функции: это значит, что закисление крови подрывает иммунную защиту организма, снижает сопротивляемость простудным и инфекционным заболеваниям.

Наиболее уязвимы перед анемией дети и подростки. Острый дефицит жизненно важного минерала может сказаться на их умственном и физическом развитии[17].

Гемоглобин — незаменимый участник жизнедеятельности, на который возложены важнейшие функции: перенос кислорода и углекислого газа, сохранение кислотно-щелочного баланса, противостояние ядам.

Еще одна функция — сигнальная — помогает по отклонению уровня гемоглобина от нормы выявить риски развития патологий и принять контрмеры.

Таким образом, контроль и оперативная коррекция уровня гемоглобина — не прихоть врачей, а действенный способ сохранить здоровье.

Источник: //www.pravda.ru/navigator/za-chto-otvechaet-gemoglobin.html

В состав гемоглобина входит…? качественный состав гемоглобина

Химический состав гемоглобина

Какой микроэлемент входит в состав гемоглобина и эритроцитов? Кровь является самой важной субстанцией организма человека. Она обеспечивает питание, а кроме того, межклеточный обмен.

Гемоглобин представляет собой вещество белковой природы, которое входит в состав кровяных телец, которые отвечают за так называемую транспортировку кислорода между клетками различных органов человека и легкими. В том случае, если гемоглобин в крови человека понижен, то кислород к тканям поступает весьма слабо.

Нарушение столь важного процесса может очень плохо отразиться на общем самочувствии человека. Но также негативно на здоровье сказывается и его повышенный уровень.

Элемент, входящий в состав гемоглобина, интересует многих.

Отклонения содержания гемоглобина в крови

Дефицит данного вещества способен вызывать упадок сил наряду с общей слабостью организма, снижением трудоспособности и нарушением памяти. В качестве сопутствующих симптомов человек может наблюдать у себя частые обморочные состояния либо следующие признаки:

  • Высыхание слизистых.
  • Высыхание кожных покровов.
  • Ослабление ногтей и волос.

Ионы железа

Ионы железа, которые входят в состав гемоглобина, занимаются доставкой кислорода к клеткам всех тканей. Поэтому нехватка данных элементов вызывает так называемую железодефицитную анемию.

Подобные патологические состояния способны вызвать у людей не только снижение уровня железа в гемоглобине. Вероятна обильная потеря этого элемента во время месячных, в процессе родов. Основным источником этого элемента в продуктах выступает животный белок. Собственно, его недостаток и вызывает плохое самочувствие.

Что касается высокого показателя гемоглобина, то это свидетельствует о повышенном уровне сахара, об онкологических процессах либо всевозможных нарушениях работы сердца и так далее.

О данном состоянии может свидетельствовать и дефицит фолиевой кислоты, витамина В12. При повышенных показателях гемоглобина кровь обладает высокой вязкостью и густой консистенцией.

Такое явление может послужить причиной образования тромбов в сосудах, что гарантированно приводит к инфарктам.

//www.youtube.com/watch?v=Vwq9FAO9C04

Таким образом, показатель гемоглобина в составе крови обязательно должен находиться в норме. Для того чтобы предупредить столь опасные патологии в организме, как анемия, доктора всегда назначают сдачу крови на гемоглобин.

О чем говорит анализ крови?

Без выполнения общего анализа крови нельзя произвести ни одного диагностирования. Расшифровка составляющих компонентов имеет несколько этапов, позволяющих определить степень опасности заболевания, динамику его развития в рамках проведенного лечения.

Главным в анализе служит значение наличия эритроцитов наряду с лейкоцитами, уровнем гемоглобина, лейкоцитарной формулой, скоростью оседания эритроцитов и гематокритом. Какой микроэлемент входит в состав гемоглобина? Это железо.

Как уже было отмечено, пониженный уровень может послужить причиной возникновения анемии.

Показатель эритроцитов сообщает о присутствии красных кровяных телец в клетках, которые в своем составе содержат гемоглобин, играя при этом роль некоего транспорта для кислорода, который нужен тканям.

Эритроциты выполняют защитную роль, так как принимают участие в иммунных и аутоиммунных процессах, абсорбируя токсины.

Они, помимо всего прочего, отвечают и за доставку аминокислот от пищеварительных органов к тканям человеческого организма. А вот какие ионы входят в состав гемоглобина?

В расшифровке анализа присутствует такой показатель как гематокрит, демонстрирующий соотношение объема эритроцитов к плазме.

Собственно, этот показатель и помогает определить, имеются нарушения процесса соединения гемоглобина или нет. Данное значение фиксируют в процентном соотношении.

Нормальным показателем у женщин до тридцати лет является 43,5 %, а у мужчин – 49 %. У женщин в возрасте от 50 до 65 лет это значение доходит до 45 %, а у мужчин – до 49 %.

Все приведенные значения при общей совокупности дают возможность доктору своевременно определить начало развития той или иной патологии, осуществить своевременное лечение для пациента.

Что входит в состав гемоглобина?

Итак, гемоглобин служит главным компонентом эритроцитов. В его состав входит «гем», что представляет собой комплексное соединение железа, и «глобин». Непосредственно в крови данный белок присутствует в форме соединения гемоглобина с кислородом.

Также существует форма другого вида гемоглобина, который называется оксигемоглобин. Этот тип остается без кислорода и находится в артериальной крови. Что касается венозной крови, то в ней присутствуют обе представленные формы. Какой микроэлемент входит в состав гемоглобина и эритроцитов?

Гематокрит

Важную роль в рамках диагностирования анемических патологий играет определение значения концентрации гемоглобина, общей величины гематокрита. Напомним, что этот элемент является объемом красных клеток, содержащихся в крови. Таким образом, анемию, как правило, диагностируют при следующих показателях:

  • Среди мужчин, при факте снижения концентрации гемоглобина менее 140 грамм на литр, а показатель гематокрита ниже 42 %.
  • Среди женщин, при снижении меньше 120 грамм на литр и 37 % гематокрита.

В том случае, если была диагностирована анемия, концентрация данного вещества, что входит в состав гемоглобина, может колебаться. Это зависит от формы и общей степени ее выраженности.

Анемия, которая вызывается дефицитом железа в крови, сообщает об умеренном снижении гемоглобина, то есть не больше, чем 114 грамм на литр. На фоне сильных кровопотерь данный показатель может приобретать значение, равное 85 граммам на литр. Минимальным показателем этого вещества в крови у живых людей является 10 грамм на литр.

В состав гемоглобина входят молекулы белка.

Заключение

Для того чтобы повысить уровень гемоглобина и предотвратить появление анемии необходимо обратить внимание на питание, которое обязательно должно являться сбалансированным и полноценным. В особенности следует остановиться на продуктах, которые содержат железо.

Самые богатые на это вещество: говядина, куриные яйца, курага и грецкие орехи. В рацион также следует включить и кисломолочные изделия. Так, мы выяснили, что входит в состав гемоглобина.

Источник: //FB.ru/article/365155/v-sostav-gemoglobina-vhodit-kachestvennyiy-sostav-gemoglobina

Гемоглобин

Химический состав гемоглобина

Гемоглобины – это железосодержащие белки крови сложной структуры, которые отвечают за газообмен и поддержание стабильного обмена веществ. В кровеносной системе гемоглобин выступает неким посредником между тканями и легкими в процессе обмена углекислым газом и кислородом.

Допустимый уровень гемоглобина меняется с возрастом, однако в показателях нормы возможны небольшие отклонения. Нарушение баланса приводит к развитию серьезных заболеваний, и некоторые из них носят характер необратимого патологического процесса.

Отклонение от нормы данного белка в любом случае будет сопровождаться соответствующей клинической картиной, поэтому при сторонней симптоматике следует незамедлительно обращаться за медицинской помощью, а не проводить лечение самостоятельно. Определить эффективное лечение можно только после того, как будет проведен анализ крови на гемоглобин.

Функции гемоглобина заключаются в обеспечении дыхательного процесса в организме, который осуществляется в три этапа:

  • клеточное дыхание – клетки насыщаются кислородом;
  • внешнее дыхание – в легкие поступает кислород, а организмом выделяется углекислый газ;
  • внутреннее дыхание – в легких кислород захватывает гемоглобин, они трансформируются в оксигемоглобин и разносятся по всем клеткам.

Именно поэтому нарушение баланса данного белка может приводить к крайне негативным последствиям, а в отдельных случаях даже к летальному исходу.

В крови человека содержатся разные виды гемоглобина:

  • фетальный или плодный – этот вид белка содержится в крови новорожденного и уменьшается до 1% от общего количества гемоглобина в организме к пятому месяцу жизни ребенка;
  • оксигемоглобин – содержится в клетках артериальной крови и связан с молекулами кислорода;
  • карбоксигемоглобин – содержится в венозной крови и связан с молекулами углекислого газа, с которыми транспортируется в легкие;
  • гликированный – соединение белка и глюкозы, циркулирует в крови. Этот вид белка выявляется в анализах на сахар;
  • метгемоглобин – связан с химическими веществами, его рост в крови может говорить об отравлении организма;
  • сульфгемоглобин – эта молекула гемоглобина появляется в крови только при приеме некоторых препаратов. Допустимый уровень гемоглобина этого типа – не больше 10%.

Виды гемоглобина, а также определение, какое его количество находится в крови, выявляются только путем лабораторной диагностики.

Формула гемоглобина подразумевает неразрывную связь с количеством эритроцитов, на основе чего и составляются показатели нормы. Средний оптимальный показатель уровня этого белка для взрослого человека:

  • у мужчин – 125-145 г/л;
  • гемоглобин у женщин – 115-135 г/л.

Кроме этого, используется и цветовой показатель для определения нормы данного белка в крови. Оптимальная степень насыщенности составляет 0.8-1.1. Кроме этого, отдельно определяется степень насыщения каждого эритроцита гемоглобином, средняя норма при этом – 28-32 пиктограмма.

Нормы содержания гемоглобина в зависимости от возраста

Строение гемоглобина нестабильно, и любое нарушение, происходящее в нем, приводит к развитию определенных патологических процессов. В результате воздействия тех или иных этиологических факторов может возникать:

  • образование аномальных форм белка – на данный момент клинически установлено только 300 форм;
  • образование стойкого, не пропускающего кислород соединения карбогемоглобин при отравлении углекислым газом;
  • сгущение крови;
  • снижение гемоглобина, приводящее к развитию определенной степени анемии.

Повышение белка возможно при следующих этиологических факторах:

  • патологическое увеличение количества эритроцитов при онкологических процессах;
  • увеличение вязкости крови;
  • пороки сердца;
  • ожоги;
  • кишечная непроходимость;
  • легочно-сердечная недостаточность.

В то же время следует отметить, что у жителей гор гемоглобин в крови постоянно повышен, что является нормальным физиологическим показателем. Также нормы этого белка завышены у людей, долго находящихся на свежем воздухе – летчиков, альпинистов, высотных работников.

Понижение гемоглобина в крови может быть обусловлено следующими факторами воздействия:

  • переливание большого количества плазмы;
  • острая кровопотеря;
  • хронические микрокровотечения: при геморрое, десневые и маточные кровотечения;
  • гемолиз, приводящий к разрушению эритроцитов;
  • дефицит железа и витамина В12;
  • при патологических процессах в костном мозге.

Кроме этого, снижение или повышение этого белка может быть обусловлено неправильным питанием – если в организме недостаточное количество или, напротив, чрезмерный объем некоторых продуктов с соответствующим химическим составом.

Строение молекулы гемоглобина

При пониженном гемоглобине может присутствовать симптоматика такого рода:

  • быстрая утомляемость;
  • сухость кожи и слизистых;
  • слабость, общее недомогание;
  • частые головокружения;
  • задержка умственного и физического развития у детей;
  • повышенная восприимчивость к инфекционным заболеваниям;
  • нарушение цикла сна;
  • плохой аппетит или его отсутствие.

Следует отметить, что пониженный уровень белка наиболее опасен для детей, так как приводит к отставанию в развитии.

Повышенный уровень данного белка в организме также негативно сказывается на здоровье человека, что будет проявляться в виде такой клинической картины:

  • желтушность кожных покровов и слизистых, языка;
  • бледность кожи;
  • зуд;
  • недобор массы тела;
  • увеличение печени;
  • нарастающая слабость;
  • пигментация на ладонях и в области старых рубцов.

Как первое, так и второе может привести к крайне негативным последствиям.

Забор крови для определения того, какое количество эритроцитов входит в состав гемоглобина, а также других лабораторных данных, проводится по назначению врача.

Анализ на гемоглобин сдается утром, натощак. Также за сутки до сдачи крови нужно отказаться от алкоголя и препаратов, которые воздействуют на кроветворную систему. Забор крови осуществляется из пальца.

В перечень методик входит следующее:

  • колориметрирование;
  • газометрирование;
  • определение железа.

Трактовать правильно то или иное обозначение может только квалифицированный специалист. Поэтому после получения результатов анализов следует отправиться с ними к лечащему врачу – он определит уровень гемоглобина и назначит дальнейшие терапевтические мероприятия.

Источник: //MedAnaliz.pro/krov/gemoglobin

гемоглобин — Химическая энциклопедия

Химический состав гемоглобина

ГЕМОГЛОБИН (от греч. haima — кровь и лат. globus — шар)

осн. белок дыхат. цикла, участвующий в переносе O2 от органов дыхания к тканям, а в обратном направлении — CO2. Содержится в эритроцитах крови почти всех позвоночных и гемолимфе большинства беспозвоночных животных. Г. позвоночных (мол. м.

6,4∙104-6,6∙104) состоят из четырех попарно идентичных субъединиц (их обозначают греч. буквами; теми же буквами обозначают входящие в состав субъединиц полипептидные цепи, а также гены, кодирующие эти цепи).

Каждая субъединица имеет белковую глобиновую часть, состоящую из 140–160 аминокислотных остатков, с которой нековалентно связан гем-ферропрото-порфирин (см. формулу).

Функцию переноса O2 у некоторых видов беспозвоночных выполняют крупные гемсодержащие белки-эритрокруорины (мол. м. 0,4∙106-6,7∙106), состоящие из 30–400 субъединиц, и хлоркруорины (мол. м. 3,4∙106), состоящие из 190 субъединиц. Эти белки способны обратимо связывать одну молекулу O2 на группу тема, т. е.

на субъединицу. Переносчиком O2 у др. видов беспозвоночных служат негемовые белки, состоящие из 8–10 субъединиц,— медьсодержащие гемоцианины (мол. м. 0,05∙107∙107) и железосодержащие гемэритрины (мол. м. 1∙105). Каждая субъединица таких белков содержит два атома металла (соотв.

Cu + и Fe2+), способных связать одну молекулу O2.

Г. взрослого человека (НbА) имеет мол. м. 6,49∙104 и принадлежит к числу наиб. изученных белков. Его форма в растворе близка к эллипсоиду с осями 6,4, 5,5 и 5,0 нм; изоэлектрич. точка 6,9. Тетрамер НЬА состоит из двух α- и двух β-субъединиц, их полипептидные цепи содержат соотв. 141 и 146 аминокислотных остатков.

Известны первичная структура обеих цепей, а также пространств. структура оксигенированной, дезоксигенированной, ряда лигандированных, а также окисленной формы (содержит Fe3+) НbА. Пространств. структура субъединиц (рис. 1) характеризуется наличием восьми α-спиральных участков, включающих около 80% аминокислотных остатков, и внутр.

полости — гемового кармана. Фиксирование тема в субъединице осуществляется в результате гидрофобных взаимод. пиррольных и винильных групп тема с алифатич. и ароматич.

боковыми радикалами аминокислот, выстилающими полость кармана, а также благодаря координационной связи (направлена перпендикулярно к плоскости кольца тема) Fe2+ с аксиальным лигандом-имидазольной группой гистидина (т. наз. проксимальный гистидин). При оксигенации молекула O2 занимает шестое вакантное место в координационной сфере Fe2+.

Связывание происходит обратимо, без окисления железа, с образованием стабильного оксигенированного комплекса НbO2. Одна молекула Г. способна присоединить 4 молекулы O2-по одной на группу тема.

Рис. 1. Схема упаковки поли-пептидной цепи β-субъединицы гемоглобина. Точками обозначены положения α-С атомов аминокислотных остатков; 1 — гем; 2 — проксимальный остаток гистидина.

Субъединицы α и β прочно удерживаются в составе тетрамера Г. множественными ван-дер-ваальсовыми взаимод. и водородными связями; дезоксигенированная форма НbА стабилизирована кроме того неск. ионными связями внутри и между субъединицами. Тетрамер Г. — кооперативная структура, в которой существует взаимод. пространственно разобщенных между собой групп (т. наз. гем-гем взаимодействие).

Это проявляется в облегчении присоединения к тетрамеру последующих молекул O2 по мере протекания оксигенирования, что значительно увеличивает эффективность переноса O2 при физиол. условиях по сравнению с мономерными Г. и миоглобином (белок, депонирующий O2 в мышцах). Присоединение O2 к молекуле Г. сопровождается значит. конформационными перестройками пространств.

структуры субъединиц и тетрамера в целом.

Сродство Г. к O2 является основным физ.-хим. показателем функциональных свойств Г.; его принято характеризовать зависимостью степени оксигенирования Г. от парциального давления кислорода (кислородно-диссоционная кривая, или КДК, рис.

2), а также величиной, при которой достигается оксигенирование 50% Г. (р50)- Нормальная величина р50 НbА в крови при физиол. условиях [37 °C, парциальное давление CO2 40 мм рт. ст., pH 7,4] составляет 26–28 мм рт. ст.

Сигмоидный характер КДК отражает кооперативный характер оксигенирования. При существующем у человека различии артериальной и венозной крови (соотв. 90 ± 10 и 40 ± 2 мм рт. ст.) 1 л крови, насыщенной в легких кислородом (92–98% Г.

находится в форме НbO2), отдает в тканях ок. 45 мл O2, при этом содержание НbO2 в венозной крови составляет 70–75%.

Рис. 2. Зависимость содержания оксигемоглобина от парциального давления O2.

Из клеток тканей CO2 диффундирует через плазму крови в эритроциты, где гидратируется в реакции, катализируемой ферментом карбоангидразой:

Гидрокарбонат-ионы в эритроцитах замещаются далее на ионы Cl− из плазмы, сами переходят в плазму и переносятся ею к легким. Определенная часть CO2 связывается в эритроцитах с N-концевыми α-аминогруппами Г. с образованием остатка карбаминовой кислоты, уменьшая сродство Г. к O2.

Увеличение РСО2 температуры, ионной силы раствора и уменьшение pH снижают сродство Г. к O2. Важнейший внутриэритроцитарный регулятор сродства — анионы 2,3-дифосфоглицериновой кислоты. Увеличение их концентрации также уменьшает сродство Г. к O2. Снижение сродства при уменьшении pH в интервале 9–6 наз.

щелочным эффектом Бора, который обусловлен существованием равновесия:

Этот эффект вносит значит. вклад в поддержание постоянного значения pH крови и освобождение O2 в тканях соотв. уровню обмена веществ [увеличение концентрации CO2 сдвигает равновесие реакций (1) и (2) вправо].

В легких, где рСО2 составляет 40 мм рт. ст., процессы, описываемые реакциями (1) и (2), идут в обратном направлении, в результате чего CO2, находящийся в растворенном и связанном с Г. состоянии, освобождается, Г.

оксигенируется и дыхат. цикл завершается.

У человека на разных этапах развития организма обнаружено несколько Г., различающихся составляющими их субъединицами. На ранних стадиях эмбрионального развития у зародыша обнаруживаются Г. строения, , .

На более поздних стадиях появляется и доминирует к моменту рождения HbF (; т. наз. фетальный Г.). Свойства эмбриональных Г. обеспечивают выполнение кислородтранспортной функции в специфич. условиях внутриутробной жизни.

В эритроцитах взрослого человека содержится в норме 95–97% НЬА , начинающего преобладать через 2–3 месяца после рождения, и 2–3% НbА2

Первичные структуры иполипептидных цепей Г. человека, а также мн. др. глобиновых цепей разл. происхождения известны. Гены, кодирующие α-глобиновые цепи Г. человека, сцеплены и расположены в последовательности на хромосоме 16 (цифры-номера дуплицированных генов); группа генов, кодирующих др.

полипептидные цепи, также непосредственно примыкающие один к другому, локализована на хромосоме 11. Первичная структура α- и не α-глобиновых генов человека известна.

Для каждого из них установлено наличие двух нитронов (отрезков ДНК, прерывающих кодирующие участки,-экзоны) и больших некодирующих участков, находящихся на флангах генов.

Биосинтез тема, α- и β-глобиновых цепей, а также сборка тетрамерных молекул НbА осуществляется в клетках эритроцитарного ряда и практически завершается к моменту выхода зрелых эритроцитов (их продолжительность жизни у человека составляет 120–130 дней) из костного мозга в кровяное русло.

Точковые мутации в экзонах глобиновых генов могут вести к появлению мутантных Г. с единичной аминокислотной заменой. Это м. б. причиной молекулярных болезней — наследств. гемоглобинопатий. Наиб. известный пример мутантного Г. — HbS, в котором шестой от N-конца β-глобиновой цепи остаток глутаминовой кислоты заменен на остаток валина. Такой Г.

содержится в эритроцитах больных серповидноклеточной анемией. Точечная мутация, делеция (выпадение участка ДНК) или другой дефект глобинового гена, локализованный вне экзонов, может уменьшить продукцию глобиновых цепей в эритроцитах, нарушить сбалансированный биосинтез α- и β-цепей и привести к др.

распространенной разновидности гемоглобинопатий-талассемии.

Лит.: Уайт А., Хендлер Ф., Смит Э., Основы биохимии, пер. с англ., т. 3, М, 1981, с. 1218–66; Bunn Н. F., Forget В. G., Ranney Н. М, Нетоglobinopathies, Phil. — L.

— Toronto, 1977; Human hemoglobins and hemoglobinopathies, “Texas Reports on Biology and Medicine”, 1980–1981, v. 40; Atlas of molecular structures in bioldgy, ed. by D.C. Philips, P.M. Richards, v. 2, Haemoglobin and myoglobin, ed. by G. Fermi and M.F.

Perutz, Oxf., 1981; Methods in enzymology, v. 76-Hemoglobins, N. Y. — L. — [a. o.], 1981.

В. А. Спивак

Источник: Химическая энциклопедия на Gufo.me

Источник: //gufo.me/dict/chemistry_encyclopedia/%D0%B3%D0%B5%D0%BC%D0%BE%D0%B3%D0%BB%D0%BE%D0%B1%D0%B8%D0%BD

ТерриторияЗдоровья
Добавить комментарий